咨询电话400-0258-803
最新公告: 诚信为本:市场永远在变,诚信永远不变。
滑雪线路
联系我们
地址:海南省海口市龙华区国贸
电话:400-888-9988
传真:400-777-9977
邮编:570000
幸运飞艇网页计划
幸运飞艇网页计划杂谈

当前位置:主页 > 幸运飞艇网页计划杂谈 >

简单微积分 学校未教过的超简易入门技巧

文章来源:未知 更新时间:2018年-08月-07日

  圆的面积公式是“半径×半径×圆周率”。在方格实验中,我们的目的是求圆周率,所以可以把这个公式变形,得到“圆周率=面积÷(半径×半径)”。在图6的例子中,圆的半径为2,所以用面积除以2的2次方4,得出圆周率为2.972 5。

  本书为微积分入门科普读物,书中以微积分的思考方法为核心,以生活例子通俗讲解了微积分的基本原理、公式推导以及实际应用意义,解答了微积分初学者遭遇的常见困惑。本书讲解循序渐进、生动亲切,没有烦琐计算、干涩理论,是一本只需轻松阅读便可以理解微积分原理的入门书。

  印度数学家是在头脑中计算的吗?毕竟他们可是一群能够背诵20×20 的乘法口诀表的人。你可能会认为,他们用心算来计算肯定是小菜一碟。

  但是,庞加莱思考的方向在本质上是准确无误的。只要思考的方向正确,即使稍微出点儿差错,对整体而言也并不是致命的。在学校,考试之所以依据计算结果的正确与否来确定成绩,是因为根据思路来给分数比较困难。

  在表1中,我们计算了短条数从10条到20 000条时的短条总面积。条数(N)为20 000时,每条短条的宽度Δx是半径的1/10 000,只有0.000 1 cm。

  如果把在小学初中学的长方形、圆形的知识比作乌冬面、土豆块,那么微积分就相当于面包、土豆沙拉等应用性料理。多亏有了积分法,人类才能够计算各种图形的面积和体积。使用积分,无论是多么奇怪的形状,只要下功夫就能够计算出结果,这真是巨大的进步。

  图7是小方格组成的与圆近似的图形。左边是大方格,右边是小方格。通过这两个图大概可以明白“把粗糙的图形精细化,就会接近实际图形(圆)”。精度非常高的锯齿状图形,实际上很难在视觉上与平滑图形区分出来。

  宽度为Δx的短条的面积总和,在短条条数(N)增加时会如何变化呢?我们来实际确认一下。逐一计算不同条数下所有短条的总面积很麻烦,不过使用计算机的话可以一下子解决,结果如表1所示。

  在这里,设短条的条数为N。用直径2(半径为1,直径是半径的2倍,所以直径为2)除以短条的条数(N),就能够得出每一条短条的宽度Δx。也就是说,Δx是

  日本小学的家政课会讲授乌冬面、土豆块2等简易料理的烹饪方法。之所以特地在学校中讲授这些内容,是因为这些都是烹饪中的基础方法。实际上我们自己做菜时,多会在商店中购买成品的乌冬面,也基本不会频繁烹制土豆块。但是,如果掌握了这些基础烹饪方法的话,就能够烹制出更多复杂的菜品。例如,乌冬面的烹饪方法可以运用到面包、比萨或者意大利面中,从土豆块中学到的方法可以拓展到土豆沙拉或者油炸饼中。

  小学所学的图形面积、体积的计算,实际上是与积分世界相连通的。积分并不是高中教材中突然半路杀出的“程咬金”,初等教育中相关内容的学习,已经为迈入积分世界做了充分的热身。

  掌握长方形面积的计算方法后,就可以将其应用到三角形的面积计算中。反过来说,如果不知道长方形面积的计算方法,也就无法计算三角形的面积。

  同样,本书的侧重点也放在了“思考的要领”上,我认为这是微积分的本质。比如,第 1 章中几乎没有出现积分符号。你可能会担心,不用积分符号的话是否能够真正理解相关内容。其实,先在第 1 章中接触微积分的本质内容,第 2 章之后出现的公式、算式将会意外地变得易于理解。

  电视、电脑的液晶显示器,都是使用这个原理来显示画面的。液晶显示器显示的画面实际上是锯齿状的。但是显示器中锯齿的精细度非常高,所以我们眼中看到的就是平滑的线了。

  这是因为,三角形的面积可以看作是“以三角形的一条底边为边长、该边上的高为另一边的长方形面积的一半”。根据图2可知,三角形的面积正好是对应长方形面积的一半,也就是说“三角形的面积=底×高÷2”。

  积分法的起源是“测量图形的大小”。古时候图形长度、面积、体积的计算方法,通过口传心授得以流传,经过历代人的智慧的锤炼,进而发展成为现在的积分法。

  在这里,我们逐渐缩小短条的宽度,缩小到再也不能缩小的程度。这样一来,短条与其说是长方形,倒不如说看起来更像“一条线”。无数根“线”相加,其结果逐渐接近“圆的面积”。用积分符号来表示的话,可以写成以下形式。

  即便你对计算不是特别明白,也没必要在意;或者一点儿也不明白,也没有关系。让我们放松下来,轻松地去探索微积分的本质吧!

  说起微积分,大家有什么印象?想必很多人会联想到棘手的计算吧。甚至还会有人想到这种情景——在学校的考试中,只是因为计算稍稍出错,就被大幅扣分,凄惨至极。

  在此基础之上,我们选取一条宽度为Δx的短条。Δ是希腊字母,读作“德尔塔”(Delta),多用作“差”(difference)的符号,表示非常小的数值。

  我们也可以这样说,幸运飞艇计划:三色幼儿园...,圆形实际上是由无数精细小方格组成的锯齿状图形,即圆形是锯齿状图形的“极限”。像这样,“近似”在数学中是极其好用的方法。

  我喜欢南方的国家,2010 年曾在印度生活了一年。在金奈(Chennai,旧称 Madras)的一所数理科学研究所做研究时,深深吸引我的不仅是印度这个国家,还有印度人的研究方法。

  虽说如此,但既然说到了符号,从现在开始我们就尝试使用积分符号吧。公式也会从此处开始出现,不过内容和刚才的讲解是完全一致的,所以请轻松地读下去。和业界人士使用行业术语讲话一样,使用数学符号讲解数学,相同的内容在表达上也会看起来非常优雅。

  我们将短条的宽度不断缩小,然后尝试计算圆的面积。为了便于之后的计算,假设圆的半径为1 cm(图10)。如果在这个圆的内部排列短条并计算其总面积,结果会怎么样呢?

  神永正博(Kunihiko Kodaira) 1967年出生于东京,理学博士,日本东北学院大学教授。曾在京都大学研究生院理学研究所(数学方向)进行博士后期课程学习。主要研究方向为解析学(作为量子力学基础方程式的薛定谔方程)以及密码理论。

  其中令人惊讶的是,印度的研究者不怎么计算。当然,并不是完全不计算,而是与计算相比,他们在思考上花费的时间更长。我甚至怀疑他们这样是不是为了节约纸。“只要有纸和铅笔就能够做研究”是数学家的口头禅,但是印度人可能会笑道:“难道最重要的不是用脑子吗?”在印度的经历让我切身体会到,数学研究中使用的是头脑。

  如果将方格不断替换为更小的方格,“圆内部方格数对应的圆周率”和“包含圆边界的方格数对应的圆周率”,二者的数值会慢慢接近,都接近圆实际的圆周率,这就是“夹逼定理”。

  这个疑问看上去似乎很无聊,但在高等数学中却是一个很有意思的问题。从结论上来讲,为了解决上述疑问,我们有必要使用“夹逼定理”(两边夹定理),从圆的内部和外部都取近似来研究图形。即先计算出“圆内部的方格数”对应的圆周率,然后再用同样的方法,计算出“包含圆边界的方格数”(内部方格数加包含圆边界的方格数)对应的圆周率。这样一来,我们可以得到下面的结论:

  说到这里,大家是不是想起了小学时初学面积计算的情景?在图形面积计算中,三角形、平行四边形、梯形、圆形等图形都是放到长方形之后学习。长方形的面积仅用“长×宽”就可以计算,可以说是最简单、朴素的图形。顺便提一下,在数学世界中,正方形被看作是“一种特殊的长方形”。

  不过,对于如何看待微积分,还存在像上面这位博士一样的一类人,他们的看法在某种意义上略显偏激。这种人在学校里可能难以被认可,不过在社会中似乎能生存下去。

  这项作业实际上与圆的面积公式相关。圆的面积公式是“半径×半径×3.14”,其中的3.14是圆周率的近似值,而“尝试数方格的个数”就是一种讲解圆周率推导的方法。

  公式中那个像把字母S纵向拉长的符号音同integral(积分)。积分原本就是“和”的意思,因此积分符号也是取自拉丁语中“和”的单词Summa的首字母S。这是一位叫作莱布尼茨的数学家(兼哲学家)提出的。

  若问为什么要算出短条面积,这是因为我们要从这里开始计算圆的面积。把这些细长短条的面积相加,就是圆的面积。具体来说,把从左端到右端的短条全部相加就可以了。

  探寻积分法诞生的历史,大致可以追溯到公元前1800年左右。公元前200年的阿基米德时代1,在计算抛物线和直线围成的图形面积问题上,已经出现了与现在积分法十分相似的“穷举法”。积分的历史,还线世纪,印度的婆什迦罗二世提出了积分法的“前身”方法。进入17世纪,牛顿综合了微分法和积分法,尝试从万有引力理论来推导天体的运动规律。

  另外,虽然微积分中会出现各种各样的公式、符号,不过初学者最开始不太理解这些东西也没有关系,对Δ和d也同样如此。

  我们从表1的结果中可以发现,条数为10时,总面积是2.637 049,这个数值和3.14…迥然不同;当条数为20 000时,总面积则成了3.141 391。怎么样?是不是可以切实感受到,当短条的条数增加时,短条的总面积会逐渐接近3.141 592 6…=π。

  初等教育中的图形计算,通常只针对长方形、圆形等规规矩矩的图形。而现实情况中,这些知识往往难以直接去应用。

  梯形的情况又如何呢?梯形可以看作平行四边形的一半。如图4所示,幸运飞艇平台:滑雪这个冬...,两个相同的梯形并列组合形成了平行四边形。因此,梯形的面积也是以长方形为基础计算的,为“(上底+下底)×高÷2”。

  Δ和d,这两个符号都源于“差”(difference)。二者的不同之处在于,Δ是“近似值”,而英文小写字母d是“精确值”。

  求圆的面积,要领是精细地划分圆。也就是说,划分的形状应该不限于正方形。因此,我们可以把圆分成“细长的短条”来求面积。比如图8,我们尝试把圆分成细长的短条,也就是长方形的组合。

  而对于微分,大部分人都感觉不是很熟悉。说起微分,就会提到“切线斜率”“瞬时速度”“加速度”,这些内容怎么理解

  “精确值”是什么意思呢?例如圆周率π,3.14是其近似值,无限循环的3.141 592 653 589 793 238 462 643 383 279…就是其“精确值”。近似值在某种情况下必定是不正确的,而精确值在任何情况下都是正确的。

  数学家是擅长数学的人,所以他们也很擅长计算吧?不,不一定是这样的。令人意外的是,数学家不仅会有不少单纯的计算失误,而且也常常会在思路上出现错误。

  会逐渐接近3.14。像这样,把圆的面积替换成方格的数量,逐渐求得接近待求值的方法叫作“近似”。我在小学时也做过这个实验,数十年后的今天,我仍然清晰记得努力数完方格得出答案后,内心中洋溢的满足感。

  如果对“夹逼定理”感兴趣,可以再读一读《微积分强化读本》(柴田敏男著/讲谈社)等书,可以从中获得一些专业知识。

  另外,虽然短条宽度为0.000 1 cm已经是纤细至极,但在分割图形时并不算是“精细”的尺度。实际计算积分时,会使用比0.000 1 cm更精细、更接近0的尺度。

  在小学算术课上,大家有没有做过下面这样的事情呢?如图5所示,用圆规在方格纸上画一个圆,然后数出圆中方格的个数。之后,再画几个大小不同的圆,并数出这些圆中方格的个数。

  但是,事实并非如此。印度的数学家会凭感觉来思考。在进行最后计算之前,他们首先用感觉思考,寻找正确的解题思路,这个阶段非常重要。如果能在思考阶段找到正确思路,之后总会有办法解决计算问题。

  计算圆的面积时,小学中采用的方法是用“正方形”来划分圆的内部空间。这样做的原因实际上很简单,就是因为方格纸的方格是正方形。

  如果执着于完美再现平滑的线,那么就不会出现液晶显示器吧。多亏了非完美主义的近似方法,才诞生了划时代的技术。

  略微谈点儿抽象的内容,其实微积分的本质在于方法。简单说,如果抓住思考的“要领”,那么就能轻而易举地理解复杂算式。思考的方向找对了,之后只要根据需求掌握计算技术就可以了。相反,如果不能掌握思考要领,直接从计算技术入手的话,微积分的学习便如同咀嚼沙子一般变成了苦涩的修行。

  哎呀,这位姑娘似乎认为解决微积分问题,只要套用背诵的公式就足够了。这就是那种在学校的考试中掌握了应试要领的典型人物。

  本书讲解微积分选择的是这位博士的立场。因为我认为,虽然会计算微积分更好,但最开始学习微积分时,重点并不在计算上。

  从三角形到平行四边形,再到梯形,虽然这三个图形看上去没什么直接关联,但它们的面积公式都是以长方形面积为基础推导出来的。

  先来数一数图6中,半径为2 cm的圆中有多少个方格3(方格的边长为1 mm)。虽然这种方法有些不精确,但是能让小学生更容易理解。

  再细分方格或者把圆变大的话,圆内方格面积的和,就会逐渐接近圆面积公式“半径×半径×3.14”,也就是说,圆周率

  这是因为,现实世界中存在的物质,并非都是学校中学习的那些规则的形状。相反,那些规则的形状可以说只是例外或理想化的情况。所以,对人类而言,测量现实情况中各种复杂图形大小的技术非常必要。

地址:海南省海口市虎啸山庄A栋2302电话:400-888-0588传真:0898-66778888

幸运飞艇官方指定站: 幸运飞艇娱乐之家 ICP备案编号:粤ICP备144431732-8号

copyright 2018 幸运飞艇_幸运飞艇平台_最好的幸运飞艇网投平台权威推荐【信誉网站】网站地图